© STD - 0431 - 2670142 FAX - 0431 - 2670143

DHANALAKSHMI SRINIVASAN INSTITUTE OF TECHNOLOGY

(Approved by AICTE, New Delhi & Affiliated to Anna University)
NH - 45, Trichy - Chennai Trunk Road,

SAMAYAPURAM, TRICHY - 621 112.

E.mail:dsit2011@gmail.com Website:www.dsit.ac.in

DEPARTMENT OF COMPUTER SCIENCE AND ENGIEERING

COURSE PLAN

Subject code: CS8691 Branch/Year/Sem:CSE/III/VI

Subject Name: ARTIFICIAL INTELLIGENCE Batch: 2017-2021

Staff Name: R.PADMAVATHI Academic year:2019-2020(EVEN)

COURSE OBJECTIVE

- 1. To understand the various characteristics of Intelligent agents
- 2.To learn the different search strategies in AI
- 3.To learn to represent knowledge in solving AI problems
- 4.To understand the different ways of designing software agents
- 5. To know about the various applications of AI.

TEXT BOOK:

T1: S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach," Prentice Hall, Third Edition, 2009.

T2: I. Bratko, —Prolog: Programming for Artificial Intelligence, Fourth edition, Addison-Wesley Educational Publishers Inc., 2011..

REFERENCES:

R1. M. Tim Jones, —Artificial Intelligence: A Systems Approach(Computer Science)||, Jones and Bartlett Publishers, Inc.; First Edition, 2008

R2. Nils J. Nilsson, —The Quest for Artificial Intelligence, Cambridge University Press, 2009.

R3. William F. Clocksin and Christopher S. Mellish, Programming in Prolog: Using the ISO Standard, Fifth Edition, Springer, 2003.

R4. Gerhard Weiss, —Multi Agent Systems, Second Edition, MIT Press, 2013.

R5. David L. Poole and Alan K. Mackworth, —Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press, 2010.

WEB RESOURCES

W1:http://aimaterials.blogspot.com/p/blog-page 3.html

(UNIT 1,2)

W2: https://www.slideshare.net/AfifAlMamun/artificial-intelligence-presentation-64343907

(TOPIC NO: 22,32,37,38)

TEACHING METHODOLOGIES:

≻ BB

- BLACK BOARD

▶ PPT

- POWER POINT PRESENTATION

© STD - 0431 - 2670142 FAX - 0431 - 2670143

DHANALAKSHMI SRINIVASAN INSTITUTE OF TECHNOLOGY

(Approved by AICTE, New Delhi & Affiliated to Anna University) NH - 45, Trichy - Chennai Trunk Road,

SAMAYAPURAM, TRICHY - 621 112.

E.mail:dsit2011@gmail.com Website:www.dsit.ac.in

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CS8691 ARTIFICIAL INTELLIGENCE

LTPC

3 0 0 3

UNIT I INTRODUCTION

9

Introduction-Definition - Future of Artificial Intelligence - Characteristics of Intelligent Agents-Typical Intelligent Agents - Problem Solving Approach to Typical AI problems.

UNIT II PROBLEM SOLVING METHODS

9

Problem solving Methods – Search Strategies- Uninformed – Informed – Heuristics – Local Search Algorithms and Optimization Problems -Searching with Partial Observations – Constraint Satisfaction Problems – Constraint Propagation – Backtracking Search – Game Playing – Optimal Decisions in Games – Alpha – Beta Pruning – Stochastic Games

UNIT III KNOWLEDGE REPRESENTATION

9

First Order Predicate Logic – Prolog Programming – Unification – Forward Chaining-Backward Chaining – Resolution – Knowledge Representation – Ontological Engineering-Categories and Objects – Events – Mental Events and Mental Objects – Reasoning Systems for Categories -Reasoning with Default Information

UNIT IV SOFTWARE AGENTS

9

Architecture for Intelligent Agents – Agent communication – Negotiation and Bargaining – Argumentation among Agents – Trust and Reputation in Multi-agent systems.

UNIT V APPLICATIONS

9

AI applications – Language Models – Information Retrieval- Information Extraction – Natural Language Processing – Machine Translation – Speech Recognition – Robot – Hardware – Perception – Planning – Moving

TOTAL: 45 PERIODS

Topic No	Topic Name	Books For reference	Page No	Teaching Methodology	No of periods required	Cumulati ve periods
UNIT I]	INTRODUCT	TION			
1.	Introduction–Definition	T1	1-5	BB	2	2
2.	Future of Artificial Intelligence	T1	5-16	BB	1	3
3.	Agents and environments	T1	34-36	BB	2	5
4.	Characteristics of Intelligent Agents	T1	36-40	BB	1	6
5.	Typical Intelligent Agents	T1	40-46	BB/PPT	2	8
6.	Problem Solving Approach to Typical AI problems	T1	64-69	BB	1	9

LEARNING OUTCOME:

At the end of unit, the students will be able to

- Determine and formulate a given A.I. problem that an Intelligent System must solve.
- Understand the intelligent agents and its types.
- Use appropriate Intelligent agent for any AI problem

UNIT I	T II PROBLEM SOLVING METHODS (9					
10.	Problem solving Methods	T1	75-81	BB	1	10
11.	Search Strategies- Uninformed	T1	81-92	BB	2	12
12.	Informed- Heuristics	T1	92-102	BB/PPT	1	13
13.	Local Search Algorithms and Optimization Problems	T1	108-120	ВВ	1	14
15.	Constraint Satisfaction Problems- Constraint Propagation	T1	202-208	BB	1	15
16.	Backtracking Search	T1	208-214	BB	1	16
17.	Game Playing- Optimal Decisions in Games	T1	161-163	BB	1	17
18.	Alpha – Beta Pruning – Stochastic Games	T1	167-177	ВВ	1	18

LEARNING OUTCOME:

At the end of unit, the students will be able to

- Use appropriate search algorithms for any AI problem
- Describe the role of heuristics and solve various types of search problems.

UNIT – I	TI 1	KNOWLEDGE REPRESENTATION				(9)
19.	First Order Predicate Logic	T1	285-300	BB	1	19
20.	Prolog Programming- Unification	T1	315-325	BB	1	20
21.	Forward Chaining-Backward Chaining	T1	330-337	BB/PPT	1	21
22.	Resolution	T1	337-345	BB/PPT	1	22

23.	Knowledge Representation – Ontological Engineering	T1	437	BB	1	23
24.	Categories and Objects	T1	440-446	BB	1	24
25.	Events – Mental Events and Mental	T1	446-453	BB	1	25
26.	Reasoning Systems for Categories	T1	453-458	BB	1	26
27.	Reasoning with Default Information	T1	458-462	BB	1	27

LEARNING OUTCOME:

At the end of unit, the students will be able to

- Represent a problem using first order logic
- Describe the role of heuristics and solve various types of search problems.
- Describe the categories of objects and different reasoning systems

UNIT	ΓIV	SOFTWA	RE AGENTS	S		(9)
28.	Architecture for Intelligent Agents	T1	480-483	BB	2	29
29.	Agent communication	T1	485-495	BB	2	31
30.	Negotiation and Bargaining	T1	501-510	BB	2	33
31.	Argumentation among Agents	T1	510-514	BB	1	34
32.	Trust and Reputation in Multiagent systems.	T1	518-522	BB/PPT	2	36

LEARNING OUTCOME:

At the end of unit, the students will be able to

- Illustrate the complications of planning and intelligent agents acting in the Real world.
- Provide the agent strategy to solve a given problem.
- Describe about different multi agent systems

UNIT V	APPLICATIONS					
37.	AI applications – Language Models	T1	860-865	BB/PPT	1	37
38.	Information Retrieval- Information Extraction	T1	867-873	BB/PPT	2	39
39.	Natural Language Processing	T1	888-907	BB	1	40
40.	Machine Translation	T1	907-912	BB	1	41
41.	Speech Recognition	T1	912-918	BB/PPT	1	42
42.	Robot – Hardware	T1	973-978	BB	1	43
43.	Perception – Planning	T1	978-986	BB	1	44
44.	Moving	T1	997-1003	BB	1	45

LEARNING OUTCOME:

At the end of unit, the students will be able to

- Design application s for NLP that use artificial intelligence
- Demonstrate the fundamental concepts of machine learning
- Illustrate related algorithms in the applications of NLP and agent design.

COURSE OUTCOME

At the end of the course, the student should be able to:

- Use appropriate search algorithms for any AI problem
- Represent a problem using first order and predicate logic
- Provide the apt agent strategy to solve a given problem
- Design software agents to solve a problem
- Design applications for NLP that use Artificial Intelligence.

CONTENT BEYOND THE SYLLABUS

Expert systems in artificial intelligence

CONTINUES INTERNAL ASSESSMENT DETAILS

ASSESMENT NUMBER	I	II	MODEL
TOPIC NO.(UNIT)	1-18 (1 st & 2 nd units)	19-32 (3 rd & 4 th units)	1-44 (units 1-5)

ASSIGNMENT DETAILS

ASSIGNMENT NUMBER	I	II	III
TOPIC NUMBER FOR REFERENCE	1-18 (1 st & 2 nd units)	19-32 (3 rd & 4 th units)	1-42 (units 1-5)
DEAD LINE			

ASSIGNMENT	BATCH	DESCRIPTIVE QUESTIONS/TOPIC		
NUMBER		(Minimum of 8 Pages)		
I	81511810001- 815118104055	1.Discuss in detail about different types of intelligent agents 2.Illustrate the BFS & DFS search algorithms 3.Discuss in detail about the aplha-beta pruning process		
п	81511810001- 815118104055	1.Explain in detail about the forward and backward chaining process 2.Illustrate the necessary example for resolution process 3.Outline the architecture of intelligent agents		
III	81511810001- 81511810405	 Demonstrate Natural Language Processing in detail Explain in detail about .Machine translation 		

PREPARED BY VERIFIED BY

R.PADMAVATHI, AP/CSE

HOD/CSE

APPROVED BY

PRINCIPAL